Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 11(5): 1156-1170, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30318292

RESUMO

Neuronal subtype is largely fixed in the adult mammalian brain. Here, however, we unexpectedly reveal that adult mouse striatal neurons can be reprogrammed into dopaminergic neuron-like cells (iDALs). This in vivo phenotypic reprogramming can be promoted by a stem cell factor (SOX2), three dopaminergic neuron-enriched transcription regulators (NURR1, LMX1A, and FOXA2), and a chemical compound (valproic acid). Although the site of action of the reprogramming factors remains to be determined, immunohistochemistry and genetic lineage mappings confirm striatal neurons as the cell origin for iDALs. iDALs exhibit electrophysiological properties stereotypical to endogenous dopaminergic rather than striatal neurons. Together, these results indicate that neuronal phenotype can be reengineered even in the adult brain, implicating a therapeutic strategy for neurological diseases.


Assuntos
Envelhecimento/fisiologia , Reprogramação Celular , Corpo Estriado/citologia , Neurônios Dopaminérgicos/citologia , Potenciais de Ação , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Ventrículos Laterais/citologia , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Fenótipo
2.
Stem Cell Reports ; 5(5): 805-815, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607952

RESUMO

The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming.


Assuntos
Reprogramação Celular , Elementos Facilitadores Genéticos , Células-Tronco Neurais/citologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Células-Tronco Neurais/metabolismo , Neurogênese , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Stem Cell Reports ; 4(5): 780-94, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25921813

RESUMO

Glial cells can be in vivo reprogrammed into functional neurons in the adult CNS; however, the process by which this reprogramming occurs is unclear. Here, we show that a distinct cellular sequence is involved in SOX2-driven in situ conversion of adult astrocytes to neurons. This includes ASCL1(+) neural progenitors and DCX(+) adult neuroblasts (iANBs) as intermediates. Importantly, ASCL1 is required, but not sufficient, for the robust generation of iANBs in the adult striatum. These progenitor-derived iANBs predominantly give rise to calretinin(+) interneurons when supplied with neurotrophic factors or the small-molecule valproic acid. Patch-clamp recordings from the induced neurons reveal subtype heterogeneity, though all are functionally mature, fire repetitive action potentials, and receive synaptic inputs. Together, these results show that SOX2-mediated in vivo reprogramming of astrocytes to neurons passes through proliferative intermediate progenitors, which may be exploited for regenerative medicine.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Reprogramação Celular , Fatores de Transcrição SOXB1/metabolismo , Animais , Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Calbindina 2/metabolismo , Proteína Duplacortina , Imuno-Histoquímica , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fatores de Transcrição SOXB1/genética
4.
Front Neurosci ; 8: 74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782704

RESUMO

Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

5.
Nat Commun ; 5: 3338, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24569435

RESUMO

Spinal cord injury (SCI) leads to irreversible neuronal loss and glial scar formation, which ultimately result in persistent neurological dysfunction. Cellular regeneration could be an ideal approach to replenish the lost cells and repair the damage. However, the adult spinal cord has limited ability to produce new neurons. Here we show that resident astrocytes can be converted to doublecortin (DCX)-positive neuroblasts by a single transcription factor, SOX2, in the injured adult spinal cord. Importantly, these induced neuroblasts can mature into synapse-forming neurons in vivo. Neuronal maturation is further promoted by treatment with a histone deacetylase inhibitor, valproic acid (VPA). The results of this study indicate that in situ reprogramming of endogenous astrocytes to neurons might be a potential strategy for cellular regeneration after SCI.


Assuntos
Astrócitos/metabolismo , Neurônios/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Traumatismos da Medula Espinal/genética , Animais , Astrócitos/citologia , Astrócitos/transplante , Células COS , Transplante de Células/métodos , Células Cultivadas , Chlorocebus aethiops , Proteína Duplacortina , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Neurogênese/genética , Neurônios/citologia , Fatores de Transcrição SOXB1/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/cirurgia , Transfecção/métodos
6.
Nat Cell Biol ; 15(10): 1164-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24056302

RESUMO

Adult differentiated cells can be reprogrammed into pluripotent stem cells or lineage-restricted proliferating precursors in culture; however, this has not been demonstrated in vivo. Here, we show that the single transcription factor SOX2 is sufficient to reprogram resident astrocytes into proliferative neuroblasts in the adult mouse brain. These induced adult neuroblasts (iANBs) persist for months and can be generated even in aged brains. When supplied with BDNF and noggin or when the mice are treated with a histone deacetylase inhibitor, iANBs develop into electrophysiologically mature neurons, which functionally integrate into the local neural network. Our results demonstrate that adult astrocytes exhibit remarkable plasticity in vivo, a feature that might have important implications in regeneration of the central nervous system using endogenous patient-specific glial cells.


Assuntos
Astrócitos/citologia , Reprogramação Celular/genética , Células-Tronco Neurais/citologia , Animais , Proliferação de Células , Proteína Glial Fibrilar Ácida/genética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Cell Biol ; 32(23): 4811-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23028043

RESUMO

Neural stem cells (NSCs) continually generate functional neurons in the adult brain. Due to their ability to proliferate, deregulated NSCs or their progenitors have been proposed as the cells of origin for a number of primary central nervous system neoplasms, including infiltrating gliomas. The orphan nuclear receptor TLX is required for proliferation of adult NSCs, and its upregulation promotes brain tumor formation. However, it is unknown whether TLX is required for gliomagenesis. We examined the genetic interactions between TLX and several tumor suppressors, as well as the role of TLX-dependent NSCs during gliomagenesis, using mouse models. Here, we show that TLX is essential for the proliferation of adult NSCs with a single deletion of p21, p53, or Pten or combined deletion of Pten and p53. While brain tumors still form in Tlx mutant mice, these tumors are less infiltrative and rarely associate with the adult neurogenic niches, suggesting a non-stem-cell origin. Taken together, these results indicate a critical role for TLX in NSC-dependent gliomagenesis and implicate TLX as a therapeutic target to inhibit the development of NSC-derived brain tumors.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Células-Tronco Neurais/patologia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Deleção de Genes , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Estadiamento de Neoplasias , Células-Tronco Neurais/metabolismo , Receptores Nucleares Órfãos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(52): 21117-21, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160720

RESUMO

Kruppel-like factor 4 (KLF4) is involved in self-renewal of embryonic stem cells and reprogramming of somatic cells to pluripotency. However, its role in lineage-committed stem cells remains largely unknown. Here, we show that KLF4 is expressed in neural stem cells (NSCs) and is down-regulated during neuronal differentiation. Unexpectedly, enhanced expression of KLF4 reduces self-renewal of cultured NSCs and inhibits proliferation of subventricular neural precursors in transgenic mice. Mice with increased KLF4 in NSCs and NSCs-derived ependymal cells developed hydrocephalus-like characteristics, including enlarged ventricles, thinned cortex, agenesis of the corpus callosum, and significantly reduced subcommissural organ. These characteristics were accompanied by elevation of GFAP expression and astrocyte hypertrophy. The ventricular cilia, vital for cerebrospinal fluid flow, are also disrupted in the mutant mice. These results indicate that down-regulation of KLF4 is critical for neural development and its dysregulation may lead to hydrocephalus.


Assuntos
Encéfalo/embriologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hidrocefalia/etiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Bromodesoxiuridina , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas Histológicas , Hidrocefalia/metabolismo , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica
9.
J Neurosci ; 31(39): 13816-28, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957244

RESUMO

Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.


Assuntos
Células-Tronco Neurais/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genética
10.
J Biol Chem ; 286(18): 16101-8, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454553

RESUMO

Progranulin (GRN) haploinsufficiency is a frequent cause of familial frontotemporal dementia, a currently untreatable progressive neurodegenerative disease. By chemical library screening, we identified suberoylanilide hydroxamic acid (SAHA), a Food and Drug Administration-approved histone deacetylase inhibitor, as an enhancer of GRN expression. SAHA dose-dependently increased GRN mRNA and protein levels in cultured cells and restored near-normal GRN expression in haploinsufficient cells from human subjects. Although elevation of secreted progranulin levels through a post-transcriptional mechanism has recently been reported, this is, to the best of our knowledge, the first report of a small molecule enhancer of progranulin transcription. SAHA has demonstrated therapeutic potential in other neurodegenerative diseases and thus holds promise as a first generation drug for the prevention and treatment of frontotemporal dementia.


Assuntos
Demência Frontotemporal/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Relação Dose-Resposta a Droga , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Progranulinas , Vorinostat
11.
Brain Res Bull ; 71(6): 568-77, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17292799

RESUMO

N-methyl-D-aspartate glutamate receptor 1 (NMDAR1) plays a pivotal role in different forms of memory. Indeed, hippocampal CA1 region specific knockout (KO) of NMDAR1 in mice showed memory impairment. Recently, it has been reported that environmental enrichment enhanced memory and rescued the memory deficits of the NMDAR1-KO mice. It is well known that cortex has synaptic connections with hippocampus and is the storage region of the brain for long-term memory. To understand the molecular mechanisms of the memory impairments in the NMDAR1-KO mice, we have examined gene expression profiles in cortex from the receptor KO mice compared to wild type mice. Furthermore, since memory deficits were rescued after exposure of the NMDAR1-KO mice to enriched environment, we also analyzed the gene expression in the cortex of the KO mice after 3 hours, 2 days and 2 weeks enrichment. We found that the expression levels of 104 genes were altered in the cortex of NMDAR1-KO mice. Environmental enrichment for 3 hours, 2 days and 2 weeks affected the expression of 45, 34 and 56 genes, respectively. Genes involved in multiple signal pathways were regulated in the NMDAR1-KO mice, such as neurotransmission, structure, transcription, protein synthesis and protein processing. It is not surprising that since enriched environment rescued the memory decline in the NMDAR1-KO mice, the expression changes of a number of genes involved in these signal pathways were recovered or even reversed after enrichment. Our results further demonstrated that reelin and Notch signal pathways could be involved in the enrichment effects on memory improvement in the KO mice.


Assuntos
Planejamento Ambiental , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Vias Neurais/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/genética , Animais , Perfilação da Expressão Gênica , Hipocampo/citologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Vias Neurais/citologia , Plasticidade Neuronal/genética , Proteína Reelina , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/genética , Regulação para Cima/genética
12.
Anal Biochem ; 362(1): 126-35, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17223063

RESUMO

A number of different ligands have been tested in the course of the development of protein array technology. The most extensively studied example of protein ligands has been based on antibody-antigen interaction. Other examples include protein-protein, protein-nucleic acid, and protein-small molecule interactions. All these ligands can recognize and specifically bind to protein epitopes. In this study, we have developed a novel technology using DNA-based aptamers to detect proteins based on their amino acid sequences. Mouse cathepsin D was used for the proof of principle experiment. Four tripeptides, Leu-Ala-Ser, Asp-Gly-Ile, Gly-Glu-Leu, and Lys-Ala-Ile, were selected based on the published amino acid sequence of mouse cathepsin D. DNA aptamers against the tripeptides were isolated using the systematic evolution of ligands of exponential enrichment method. We have demonstrated that the aptamers specifically interacted with mouse cathepsin D using the structure-switch method. We further performed a proximity-dependent ligation assay to demonstrate that multiple aptamers could specifically detect the protein from cell extracts. In principle, one library containing 8000 aptamers should be enough to detect almost all proteins in the whole proteome in all organisms. This technology could be applied to generate a new generation of protein arrays.


Assuntos
Aptâmeros de Nucleotídeos/química , Oligopeptídeos/química , Proteínas/química , Sequência de Aminoácidos , Animais , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Catepsina D/metabolismo , Cromatografia de Afinidade , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Ligação Proteica , Proteínas/análise , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...